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Oligotyping is a computational method used to increase the resolution of marker
gene microbiome studies. Although oligotyping can distinguish highly similar sequence
variants, the resulting units are not necessarily phylogenetically and ecologically
informative due to limitations of the selected marker gene. In this perspective, we
examine how oligotyping data is interpreted in recent literature, and we illustrate
some of the method’s constraints with a case study of the harmful bloom-forming
cyanobacterium Microcystis. We identified three Microcystis oligotypes from a western
Lake Erie bacterial community 16S rRNA gene (V4 region) survey that had previously
clustered into one OTU. We found the same three oligotypes and two additional
sequence variants in 46 Microcystis cultures isolated from Michigan inland lakes
spanning a trophic gradient. In Lake Erie, shifts in Microcystis oligotypes corresponded
to spatial nutrient gradients and temporal transitions in bloom toxicity. In the cultures,
Microcystis oligotypes showed preferential distributions for different trophic states, but
genomic data revealed that the oligotypes identified in Lake Erie did not correspond to
toxin gene presence. Thus, oligotypes could not be used for inferring toxic ecotypes.
Most strikingly, Microcystis oligotypes were not monophyletic. Our study supports
the utility of oligotyping for distinguishing sequence types along certain ecological
features, while it stresses that 16S rRNA gene sequence types may not reflect
ecologically or phylogenetically cohesive populations. Therefore, we recommend that
studies employing oligotyping or related tools consider these caveats during data
interpretation.
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INTERPRETATION OF OLIGOTYPING
PATTERNS HINGES ON MOSTLY
UNTESTED ASSUMPTIONS REGARDING
THE ECOLOGICAL AND PHYLOGENETIC
COHESION OF OLIGOTYPES

Microbiome studies using 16S rRNA gene amplicons typically
aggregate sequences into operational taxonomic units (OTUs)
based on a 97% sequence identity threshold. The OTU approach
is used, in part, to mitigate effects of high error rates from high-
throughput sequencing technologies. However, OTU methods
throw out potentially informative 16S sequence variation and can
group together ecologically distinct populations (Coleman et al.,
2006; Hunt et al., 2008; Denef et al., 2010; Shapiro and Polz, 2014).

As an alternative to OTUs, the oligotyping method can
distinguish real sequence variants from sequencing errors, and
can segregate sequence types that differ by as a little as a
single nucleotide (Eren et al., 2013). The increased resolution
offered by this approach allegedly enhances the likelihood of
identifying ecotypes. For example, Pelagibacter oligotypes from
a coastal marine environment alternated in dominance during
low and high temperature periods of the year, suggesting that
the oligotypes occupied separate niches (Eren et al., 2013). Due
to the potential increase in ecological resolution, the oligotyping
method has been broadly applied for studies in microbial
biogeography (Schmidt et al., 2014; Buttigieg and Ramette, 2015;
Cloutier et al., 2015; Newton and McLellan, 2015), host–microbe
associations (Eren et al., 2014; Menke et al., 2014; Fisher et al.,
2015), and links between microbes and disease (Eren et al., 2011).

However, to conclude that oligotypes represent ecotypes, one
must consider assumptions about the ecological (shared traits)
and evolutionary cohesiveness (derived from a single common
ancestor, distinct from other ecotypes) of ‘populations’ defined by
fine-scale nucleotide variation in 16S rRNA gene hypervariable
regions. The meaning of a microbial species or ecotype is
still highly debated, but experimental and theoretical work has
converged on a definition that includes inhabiting the same
ecological niche, exhibiting constrained genetic diversity, and
belonging to a distinct evolutionary lineage (Gevers et al., 2005;
Cohan and Perry, 2007; Koeppel et al., 2008). Exercising caution
when interpreting oligotyping results is warranted, because the
16S rRNA gene, even at full length, can miss important genetic
variation underlying ecological and evolutionary differentiation
between species (Jaspers and Overmann, 2004; Konstantinidis
and Tiedje, 2005; Maiden et al., 2013; Kim et al., 2014; Hahn
et al., 2016). From an ecological perspective, many bacterial
functional traits are not phylogenetically conserved and are
therefore unlikely to be predicted from the 16S rRNA gene
(Martiny et al., 2013). From an evolutionary perspective, the 16S
rRNA gene is a slowly evolving gene (Ochman et al., 1999), that
while useful for assigning high level bacterial taxonomy, may not
resolve more recent evolutionary diversification within a lineage.

Despite references in many articles (e.g., Delmont et al., 2014;
Schmidt et al., 2014; Kleindienst et al., 2015), the hypothesis
that 16S rRNA gene oligotypes represent ecotypes or species-
like groups is largely untested. The outcome of this hypothesis

has broad implications for other inferential claims found in
the literature regarding co-evolution, e.g., between animal hosts
and their associated microbes (e.g., Menke et al., 2014), or
biogeography of microbes (e.g., Schmidt et al., 2014; Buttigieg
and Ramette, 2015; Cloutier et al., 2015; Newton and McLellan,
2015). Some studies have already emphasized the need to conduct
studies beyond marker gene analysis that can test the ecological
hypotheses generated from oligotyping surveys (e.g., Eren et al.,
2013; Buttigieg and Ramette, 2015). We propose to examine
these assumptions using two tools designed to differentiate
closely related taxa: by performing multi-locus sequence typing
(MLST) (Maiden et al., 2013), which aims to reveal more resolved
phylogenetic relationships based on a set of neutrally evolving
housekeeping genes, and by targeting genes that underpin
functional traits (in our case toxin production).

It is an important time to validate methods for improving
resolution of 16S rRNA gene surveys, because the number
of available methods is increasing. Minimum Entropy
Decomposition (MED) is a high-throughput extension of
oligotyping that can be applied to whole microbial community
datasets (Eren et al., 2015), and otu2ot provides an R software
interface to the oligotyping and MED methods (Ramette and
Buttigieg, 2014). In addition, the recently developed dada2 tool
also aims to increase resolution of marker gene surveys, but does
so by explicitly modeling transition rates between closely related
sequences (Callahan et al., 2016). The points we raise in this
perspective apply equally to the interpretation of oligotyping,
MED, dada2, and any other tools attempting to make ecotype
inferences from 16S rRNA gene amplicons.

MICROCYSTIS CASE STUDY

To illustrate potential issues with the ecological and evolutionary
assumptions made about 16S rRNA oligotypes, we present a case
study of Microcystis, a colony-forming cyanobacterium that is
a prominent component of harmful algal blooms in freshwater
systems worldwide (Harke et al., 2016b; O’Neil et al., 2012).
First, we oligotyped Microcystis reads from a bacterial community
dataset sampled over three sites and 20 weeks from western Lake
Erie during the 2014 cyanobacterial harmful algal bloom. We
analyzed oligotypes with respect to two parameters hypothesized
to reflect key ecological traits: concentration of microcystin
(toxin potential) and total phosphorus (trophic preference). This
approach is comparable to the setup of previously published
oligotyping studies, in that we attempted to link uncharacterized
oligotypes from a community dataset to environmental gradients.
Next, we examined oligotypes and genomes from 46 Microcystis
cultures (oligotypes were determined after combining the Lake
Erie and the isolate sequence data), which were isolated (together
with their colony-associated heterotrophic bacteria) from 14
Michigan inland lakes in 2011 and 2013. Comparing oligotypes
from the Lake Erie community samples with the cultures
provided multiple advantages. The cultures were isolated from
single Microcystis colonies and were typically of clonal origin,
which served to constrain the considered population. In addition,
the culture collection allowed us to compare, with high accuracy,
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FIGURE 1 | Spatiotemporal distribution of Microcystis oligotypes in western Lake Erie. (A) The relative abundance of Microcystis oligotypes, as fraction of
total bacterial reads, from three sites in Western Lake Erie over time. The offshore site had lower median total phosphorus and chlorophyll a levels than the two
nearshore sites. Samples were taken from the retentate of 2 L lake water filtered through a 100 µm filter. M denotes missing samples. (B) Particulate Microcystin-LR
concentrations over sites and time.

the gene content of each Microcystis isolate with its oligotype,
and to construct an MLST phylogeny based on five housekeeping
genes.

Microcystis was the dominant large-colony forming
cyanobacterial genus in the 2014 cyanobacterial harmful
algal bloom in western Lake Erie (Berry et al., 2016). Analysis
with mothur produced a single abundant Microcystis OTU,
while oligotyping produced subdivisions of the OTU into three
sequence variants (CTG, CCG, CTT; Supplementary Figure S1),
which exhibited differing spatial and temporal dynamics
(Figure 1). We observed that the CTG variant dominated
in July and August (median CTG:CCG ratio = 4.3), but the
CCG variant dominated in September and October (median
CTG:CCG ratio = 0.23). The transition between these two
sequence variants coincided with a shift in bloom toxicity from
high to low (Figure 1), a trend that has been documented in other
bloom years on Lake Erie (Gobler et al., 2016). We hypothesized
that CTG might represent a toxic ecotype, and CCG might
represent a non-toxic ecotype. Indeed, the relative abundance of
CTG was positively correlated with particulate microcystin-LR
levels (Spearman’s rho: 0.71, p < 0.001). However, it’s important
to note that this correlation may be unstable due to the non-
stationarity of the data (see details in Supplementary Methods
Section).

The maximum and median relative abundance of CTT
was an order of magnitude higher at the offshore station
(maximum = 37.0%; median = 0.28%) than the nearshore

stations (maximum = 2.3%, median = 0.023%). Since
the offshore station had lower median phosphorus levels
(Supplementary Table S1), we hypothesized that the oligotypes
might underlie differences in competitive abilities along trophic
gradients.

Next, we examined 16S rRNA gene and whole genome data
from the collection of Microcystis isolate cultures (Supplementary
Table S2) to further investigate our hypotheses about Microcystis
oligotypes, toxicity, and trophic status. Similar to the Lake Erie
dataset, all Microcystis 16S rRNA gene V4 region sequences
clustered into one OTU, but we recovered five oligotypes (CTG,
CCG, CTT, TCG, CCT). Three of these matched the oligotypes
found in Lake Erie. Although the oligotypes derived from the
cultures did not indicate the trophic status of the inland lakes,
the trophic status could predict which oligotypes were present
(Figure 2). For example, CTT was the only oligotype present
in oligotrophic lakes, CCG and CTG were the only oligotypes
present in mesotrophic lakes, but all five oligotypes were present
in inland eutrophic lakes. These data support that fine-scale
variation in the 16S rRNA gene V4 region might distinguish
populations with differing competitive abilities along nutrient
gradients. Specifically, CTT might exclude other oligotypes from
oligotrophic environments, yet all three oligotypes might coexist
in the eutrophic environments due to intra-lake spatial or
temporal variation in nutrient concentrations. Recent work from
western Lake Erie demonstrates that Microcystis populations
upregulate phosphorus scavenging genes in response to low
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FIGURE 2 | RAxML tree for cultured Microcystis strains based on five
concatenated housekeeping genes (pgi, gltX, ftsZ, glnA, gyrB).
Presence of microcystin biosynthesis gene was determined from assembly
and retrieval of Microcystis genes from the Microcystis-heterotroph co-culture
metagenome. Trophic status of the lake was determined from total
phosphorus levels (Supplementary Tables S1, S2).

phosphorus conditions at offshore sites, leading to a competitive
advantage over other cyanobacterial taxa (Harke et al., 2016a).
Our data suggest that low phosphorus conditions could also
select for particular Microcystis oligotypes. Similar to hypotheses
by other authors based on oligotyping/MED analyses, this
hypothesis will need to be more formally tested.

A second hypothesis derived from our Lake Erie observations
was that Microcystis oligotypes represent ecotypes that differ in
their ability to produce toxins. However, in the cultures the
oligotypes did not unequivocally correspond to the presence
of genes for microcystin biosynthesis. Therefore, despite a
correlation between oligotypes and toxicity in the Lake Erie
dataset, we could not corroborate that the CTG variant can
generally be assumed to be predictive of a toxic genotype and
the CCG variant predictive of a non-toxic genotype. These data
are consistent with previous reports that strains containing the
toxin producing mcy gene cluster form a polyphyletic group in
Microcystis and other toxin-producing Cyanobacteria (Otsuka
et al., 1999; Kurmayer et al., 2014). Furthermore, a recent review
of global Microcystis diversity indicates that 27 strains, varying
in toxic potential, exhibit 99.4–99.93% similarity across the full
length 16S rRNA gene (Harke et al., 2016b), so surveys based on
shortened 16S rRNA gene amplicons are likely to group several
toxic and non-toxic populations together. Other studies have
used loci, such as the internal transcribed spacer (ITS), to provide
higher genetic resolution of Microcystis strains (Bozarth et al.,
2010; Lemaire et al., 2012; Pobel et al., 2012). These studies have
produced variable results with regards to identifying associations
between sequence types and environmental or biotic parameters.
Thus, for any study, it is necessary to choose a suitable gene
marker for the ecological trait of interest. When the distribution
of the ecological trait is unknown, correlations between gene
markers and environmental gradients should be interpreted with
due caution.

Although our comparison of environmental community
samples with cultures provided distinct advantages for
implementing MLST and gene targeting analyses, this approach
also has some limitations. The cultures were not derived from
Lake Erie, so the cultures may or may not represent the same
populations found in the community dataset. However, our
analysis does not hinge on this assumption. The community
dataset demonstrates that it is easy to correlate oligotypes with a
trait or environmental gradient, while the cultures demonstrate
that variation in the 16S gene is not a robust proxy for the traits
we considered. Importantly, we argue that the point of defining
ecotypes using sequencing based methods is to be able to link
ecological traits to sequence types with predictive power to other
environments. Hence, it was appropriate to combine the two
datasets.

As for the evolutionary interpretation of oligotypes, an
MLST analysis performed on the culture genomic data revealed
two main results. First, strains of the same oligotype did not
always form monophyletic groups (Figure 2). While bootstrap
support values were low for several of the branching points,
in part due to high sequence similarity of the MLST genes
within the isolate collection, several instances of polyphyletic
oligotype groups were nonetheless evident. Second, the number
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of nucleotide differences in the 16S rRNA gene V4 region was not
consistent with MLST-based patristic distances (Supplementary
Figure S2). For example, oligotypes with two or three nucleotide
differences in the 16S rRNA gene V4 region were not more
distant on the MLST tree than oligotypes differing by one
nucleotide. This indicated that Microcystis V4 oligotypes were
not phylogenetically cohesive units. Previous work has shown
that, surprisingly, many OTUs across bacterial phyla are not
monophyletic (Koeppel and Wu, 2013). Our data support this
observation and demonstrate the principle that 16S rRNA gene
hypervariable regions can be poor proxies for evolutionary
distance at finer taxonomic scales, irrespective of whether the
resolution is at the OTU or oligotype level.

In summary, distributions of Microcystis oligotypes from an
environmental community dataset corresponded with shifts in
toxicity and spatial variation in phosphorus levels. However,
an additional analysis leveraging genomic data from Microcystis
cultures revealed that strains with the same oligotype (including
oligotypes corresponding to those detected in Lake Erie) varied
in whether the toxin gene was present or not. In addition,
isolates belonging to the same oligotypes did not consistently
form monophyletic groups. Thus Microcystis 16S rRNA gene
amplicons may be useful to discriminate ecologically distinct
populations when more complex and presumably multi-genic
traits are considered, such as shifts on the oligotroph-copiotroph
spectrum (Lauro et al., 2009; Martiny et al., 2013). However,
when we focus on ecological traits that are underpinned by a
single or a handful of genes in the flexible genome, such as
toxin production, 16S rRNA gene amplicons may carry limited
information and single nucleotide variants may lead us to
unwarranted conclusions.

As this study focused on only one organismal group, we
cannot determine how broadly applicable our results are to
other studies. For example, other organisms may exhibit a
closer correlation between fine-scale variation in 16S rRNA
hypervariable regions and phylogenetic distance. Still, we
aim to highlight that phylogenetic cohesiveness is a critical
requirement to be able to equate oligotypes to ecotypes
and should be considered in any marker gene study using
oligotyping methods. In addition, the relevance of oligotypes
for predicting ecotypes is largely dependent on the marker
gene used and the ecological trait considered in each study.
In some cases, the selected marker gene may be a reasonable
proxy for ecological groups – trophic preference of Microcystis
16S rRNA gene oligotypes may represent one such case.
However, even for trophic state, which corresponds to the
relatively large environmental gradients often considered in
previous oligotyping surveys, the position along the gradient
predicted which oligotypes were present, but the reverse
was not true. This again indicates that one oligotype may
represent multiple ecotypes. As such, we caution any study
that aims to draw ecological inferences based purely on
correlations between oligotypes and environmental gradients
(e.g., Kleindienst et al., 2015). While we are limited to this
specific case study, we hope it will prompt others to more
broadly investigate lack of trait conservation and polyphyly
within oligotypes.

RECOMMENDATIONS FOR USE OF
OLIGOTYPING, MED, AND DADA2

Oligotyping, MED, and dada2 provide higher sequence
resolution to marker gene surveys, but they are inherently
constrained by the resolving power of the gene considered. In the
case of the 16S rRNA gene, which has been the marker gene used
thus far, it is well known that it has limited ability to discriminate
species/ecotype level groups (Jaspers and Overmann, 2004;
Konstantinidis and Tiedje, 2005; Maiden et al., 2013; Kim et al.,
2014; Hahn et al., 2016). Our data confirm this previously
reported property by showing (1) limited predictive power
from oligotypes to traits, and (2) limited predictive power from
oligotypes to MLST-based subclades. Importantly, oligotyping
methods can be applied to any gene, though care must be
taken to consider selection pressures acting upon the chosen
genes. In both the experimental design and data interpretation
stages, researchers should carefully consider which marker
gene to use for their survey and whether observed correlations
to environmental gradients can be biologically supported by
additional empirical evidence.

The use of oligotyping, MED, and dada2 for 16S rRNA
gene surveys remains useful because it maximizes the potential
sequence type resolution from high-throughput sequencing
studies that can then be used to formulate ecological hypotheses.
However, even at its maximum resolution, i.e., full-length high
quality sequences, the 16S rRNA has limited sensitivity to
resolve ecological and evolutionary variation between closely
related lineages. As the application of these tools is likely
to rapidly increase in the coming years, we reiterate the
original authors’ statements that these methods should be
used only as a foundation to generate ecological hypotheses
from microbial community datasets (Eren et al., 2013). The
increased resolution enabled by these new methods should not
preclude rigorous use of ecological and evolutionary terms and
concepts.
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